Available on Google PlayApp Store

Images of K-means++法

mercari beeant
k-meansクラスタ分析

k-meansクラスタ分析

【1本49.5円!365日最短当日出荷!】国産 天然水 500ml 42本 水 送料無料 ナチュラルミネラルウォーター 水想い ラベルレス 名峰 蔵王 軟水 宮城県 日本製 ローリングストック 備蓄

【1本49.5円!365日最短当日出荷!】国産 天然水 500ml 42本 水 送料無料 ナチュラルミネラルウォーター 水想い ラベルレス 名峰 蔵王 軟水 宮城県 日本製 ローリングストック 備蓄

k平均クラスタリング(k-means法)とは? [Day24]

k平均クラスタリング(k-means法)とは? [Day24]

scikit-learn でクラスタ分析 (K-means 法)

scikit-learn でクラスタ分析 (K-means 法)

SnapCrab_NoName_2020-9-24_20-10-29_No-00.png

SnapCrab_NoName_2020-9-24_20-10-29_No-00.png

【最安値に挑戦中★1本あたり約49.4円】水 ミネラルウォーター 彩水-あやみず- やさしい軟水 500ml 48本 送料無料 ペットボトル ラベルレス ライフドリンクカンパニー LIFEDRINK 国産 天然水 飲料水 軟水 備蓄水 非常用 (※採水地指定不可)

【最安値に挑戦中★1本あたり約49.4円】水 ミネラルウォーター 彩水-あやみず- やさしい軟水 500ml 48本 送料無料 ペットボトル ラベルレス ライフドリンクカンパニー…

Python/k-means法で教師なし学習!クラスタリング概要

Python/k-means法で教師なし学習!クラスタリング概要

k-means algorithm applied to image classification and processing¶

k-means algorithm applied to image classification and processing¶

Python/k-means法で教師なし学習!クラスタリング概要

Python/k-means法で教師なし学習!クラスタリング概要

アイリス 富士山の天然水 ラベルレス(2L*12本セット)【アイリスの天然水】[水 2L 天然水 国産 ペットボトル ミネラルウォーター]

アイリス 富士山の天然水 ラベルレス(2L*12本セット)【アイリスの天然水】[水 2L 天然水 国産 ペットボトル ミネラルウォーター]

f:id:kaiseh:20090114012406p:image

f:id:kaiseh:20090114012406p:image

教師なし学習の第一歩(クラスタリング)|Pythonで機械学習vol.6

教師なし学習の第一歩(クラスタリング)|Pythonで機械学習vol.6

K-means法

K-means法

アイリス 富士山の天然水 ラベルレス( 500ml×24本入)【アイリスの天然水】[水 500ml 天然水 ペットボトル ミネラルウォーター]

アイリス 富士山の天然水 ラベルレス( 500ml×24本入)【アイリスの天然水】[水 500ml 天然水 ペットボトル ミネラルウォーター]

k-meansによるクラスタリング

k-meansによるクラスタリング

k-means on A3 data set

k-means on A3 data set

f:id:neocortex:20170612005027p:plain

f:id:neocortex:20170612005027p:plain

い・ろ・は・す ラベルレス(1箱24本入(1本560ml))【2shdrk】【いろはす(I LOHAS)】[水 ミネラルウォーター]

い・ろ・は・す ラベルレス(1箱24本入(1本560ml))【2shdrk】【いろはす(I LOHAS)】[水 ミネラルウォーター]

【5分で分かりやすく解説】k-means法とは?RとPythonで実装してみよう!

【5分で分かりやすく解説】k-means法とは?RとPythonで実装してみよう!

K-meansクラスタリング

K-meansクラスタリング

K Means法とk近傍法について Juki Note

K Means法とk近傍法について Juki Note

【ふるさと納税】 富士山蒼天の水<ラベルレス> 500ml×96本(4ケース) 第1位 天然水 ミネラルウォーター 水 ソフトドリンク 飲料水 バナジウム シリカ 防災 備蓄 キャンプ アウトドア 水 ペットボトル 500ml 軟水 鉱水 国産 長期保存 富士山 送料無料 ※沖縄県 離島不可

【ふるさと納税】 富士山蒼天の水<ラベルレス> 500ml×96本(4ケース) 第1位 天然水 ミネラルウォーター 水 ソフトドリンク 飲料水 バナジウム シリカ 防災 備蓄 キャンプ アウトドア…

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

データ解析12 k平均法        データ解析12 k平均法

データ解析12 k平均法 データ解析12 k平均法

化学基礎を確実に理解するための7つの勉強法

化学基礎を確実に理解するための7つの勉強法

【ふるさと納税】 【定期便】 天然水 水 2L 3ヶ月~12ヶ月 選べる本数 6本 12本 サントリー 南アルプス ナチュラル ミネラルウォーター 定期便 白州 防災 備蓄 仕送りギフト

【ふるさと納税】 【定期便】 天然水 水 2L 3ヶ月~12ヶ月 選べる本数 6本 12本 サントリー 南アルプス ナチュラル ミネラルウォーター 定期便 白州 防災 備蓄 仕送りギフト

機械学習			機械学習とは?

機械学習 機械学習とは?

ドルコスト平均法

ドルコスト平均法

ドルコスト平均法

ドルコスト平均法

サントリー 天然水 ラベルレス(550ml*24本入)【サントリー天然水】[ミネラルウォーター 天然水]

サントリー 天然水 ラベルレス(550ml*24本入)【サントリー天然水】[ミネラルウォーター 天然水]

データ解析12 k平均法        データ解析12 k平均法

データ解析12 k平均法 データ解析12 k平均法

クラスタリングについて        クラスタリングについて

クラスタリングについて クラスタリングについて

f:id:akanuma-hiroaki:20170106072939p:plain

f:id:akanuma-hiroaki:20170106072939p:plain

【ふるさと納税】 【3~12ヶ月定期便】 い・ろ・は・す 北杜市白州産 天然水 540ml 24本×3~12ヶ月 計72~288本 いろはす 水 飲料 飲料水 ミネラルウォーター コカコーラ ドリンク ペットボトル 防災 キャンプ アウトドア 500ml以上 山梨県 北杜市 玄関 配達 仕送りギフト

【ふるさと納税】 【3~12ヶ月定期便】 い・ろ・は・す 北杜市白州産 天然水 540ml 24本×3~12ヶ月 計72~288本 いろはす 水 飲料 飲料水 ミネラルウォーター コカコーラ…

【概率】常见分布(离散/连续)、卷积公式(实际意义与作用、公式、记忆法)一、离散型变量的分布 1. 0—1分布(两点分布)X~B(1,p) 只进行一次事件试验,该事件发生的概率为p,不发生的概率为1-p。任何一个只有两种结果的随机事件都服从0-1分布。是n=1时的二项分布。 ,k=0,1。k=0时,表示某随机事件失败的概率;k=1,表示某随机事件成功的概率。 分布律(下表)。E(X)=p;D(X)=p(1-p)。 X01P(x)1-pp2. 二项分布(n重伯努利分布)X~B(n,p) 重复n次独立的伯努利实验(伯努利试验是在同样条件下重复、独立进行的一种随机试验,其特点是只有两种可能结果:发生或者不发生)。单个伯努利试验没有多大意义,反复进行时可以观察成功次数,此时的分析更有意义。 【例】某售货员电话推销n次中,成功k次的概率。,k=0,1,……n。在n次实验中成功次数为k时的概率。 E(X)=np;D(X)=np(1-p)。 记忆:二项分布就是n重伯努利分布,二项“伯”。 《二项分布(Binomial Distribution)》:https://blog.csdn.net/huangjx36/article/details/77990392 3. 泊松分布 X~P(λ) 描述单位时间内随机事件发生的次数。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】某网站平均每分钟有2次访问,下一分钟内的访问量是λ的概率。  表示某单位时间内,随机事件发生k次的概率。 E(X)=D(X)=λ。 记忆:一天内停车场没“泊”几辆车,太轻“松”,是因为λ、e两个人都有帽子(都有指数)。 4. 几何分布 X~G(p) 在n次伯努利试验中,第k次才首次成功的概率。是前k-1次都失败,第k次成功的概率。 【例】某产品的不合格率为0.05,则首次查到不合格品时的检查次数X ~ G(0.05) 。 ,   记忆:首次成功做出几何题。 二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。  2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。  2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)

【概率】常见分布(离散/连续)、卷积公式(实际意义与作用、公式、记忆法)一、离散型变量的分布 1. 0—1分布(两点分布)X~B(1,p) 只进行一次事件试验,该事件发生的概率为p,不发生的概率为1-p。任何一个只有两种结果的随机事件都服从0-1分布。是n=1时的二项分布。 ,k=0,1。k=0时,表示某随机事件失败的概率;k=1,表示某随机事件成功的概率。 分布律(下表)。E(X)=p;D(X)=p(1-p)。 X01P(x)1-pp2. 二项分布(n重伯努利分布)X~B(n,p) 重复n次独立的伯努利实验(伯努利试验是在同样条件下重复、独立进行的一种随机试验,其特点是只有两种可能结果:发生或者不发生)。单个伯努利试验没有多大意义,反复进行时可以观察成功次数,此时的分析更有意义。 【例】某售货员电话推销n次中,成功k次的概率。,k=0,1,……n。在n次实验中成功次数为k时的概率。 E(X)=np;D(X)=np(1-p)。 记忆:二项分布就是n重伯努利分布,二项“伯”。 《二项分布(Binomial Distribution)》:https://blog.csdn.net/huangjx36/article/details/77990392 3. 泊松分布 X~P(λ) 描述单位时间内随机事件发生的次数。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】某网站平均每分钟有2次访问,下一分钟内的访问量是λ的概率。  表示某单位时间内,随机事件发生k次的概率。 E(X)=D(X)=λ。 记忆:一天内停车场没“泊”几辆车,太轻“松”,是因为λ、e两个人都有帽子(都有指数)。 4. 几何分布 X~G(p) 在n次伯努利试验中,第k次才首次成功的概率。是前k-1次都失败,第k次成功的概率。 【例】某产品的不合格率为0.05,则首次查到不合格品时的检查次数X ~ G(0.05) 。 ,   记忆:首次成功做出几何题。 二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。 2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。 2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

【最短当日発送】 い・ろ・は・す ラベルレス 560ml*24本入 【いろはす(I LOHAS)】 ミネラルウォーター

【最短当日発送】 い・ろ・は・す ラベルレス 560ml*24本入 【いろはす(I LOHAS)】 ミネラルウォーター

応用数学、機械学習、深層学習:前編 1 応用数学 機械学習 深層学習: Day1確認テストの考察中間層出力演習結果と考察

応用数学、機械学習、深層学習:前編 1 応用数学 機械学習 深層学習: Day1確認テストの考察中間層出力演習結果と考察

【Python】KNN(k近傍法)とk-means(k平均法)の違いと区別

【Python】KNN(k近傍法)とk-means(k平均法)の違いと区別

k平均法による減色処理に混合ガウスモデルを適用してもうまくいかないRecommendsSpecial Topics

k平均法による減色処理に混合ガウスモデルを適用してもうまくいかないRecommendsSpecial Topics

国産 ミネラルウォーター 自然の恵み 天然水 2L×12本 水 2リットル 送料無料 LDC ライフドリンクカンパニー 水 まとめ買い 箱買い ケース買い 備蓄 ローリングストック 業務用

国産 ミネラルウォーター 自然の恵み 天然水 2L×12本 水 2リットル 送料無料 LDC ライフドリンクカンパニー 水 まとめ買い 箱買い ケース買い 備蓄 ローリングストック 業務用

【クラスタリング入門編】k-means(k平均法)を基礎から実装まで説明

【クラスタリング入門編】k-means(k平均法)を基礎から実装まで説明

ラビットチャレンジ(E資格)】機械学習_主成分分析・k近傍法・k-平均法・SVMはじめに主成分分析k近傍法(kNN:k-Nearest Neighbor)k-平均法(k-means)サポートベクターマシン(SVM)

ラビットチャレンジ(E資格)】機械学習_主成分分析・k近傍法・k-平均法・SVMはじめに主成分分析k近傍法(kNN:k-Nearest Neighbor)k-平均法(k-means)サポートベクターマシン(SVM)

【基礎からしっかり理解しよう】階層なしクラスタリングであるK平均法(K-means法)の概要を分かりやすく解説

【基礎からしっかり理解しよう】階層なしクラスタリングであるK平均法(K-means法)の概要を分かりやすく解説

【送料無料※一部地域除く】【48本】 水 500ml 蛍の郷の天然水 ミネラルウォーター 友桝飲料 ペットボトル 48本 2ケース

【送料無料※一部地域除く】【48本】 水 500ml 蛍の郷の天然水 ミネラルウォーター 友桝飲料 ペットボトル 48本 2ケース

gm problem

gm problem

f:id:hirotsuru314:20180401183834p:plain

f:id:hirotsuru314:20180401183834p:plain

IkaLog Presentation v1.3IkaLog Presentation v1.3

IkaLog Presentation v1.3IkaLog Presentation v1.3

【 全国配送対応 】【 送料無料 】【 1ケース 】水 まとめ買い 天然水 THE PURE ザ ピュア おしゃれ 北アルプスの天然水 420ml×42本 お水 ラベルレス ナチュラルミネラルウォーター 軟水 国産 硝酸態窒素 亜硝酸態窒素 PFOS PFOA 検出限界以下

【 全国配送対応 】【 送料無料 】【 1ケース 】水 まとめ買い 天然水 THE PURE ザ ピュア おしゃれ 北アルプスの天然水 420ml×42本 お水 ラベルレス…

アイブン      AI論文データベース

アイブン AI論文データベース

k-nn(k近傍法)クラス分類をPythonで実装してみよう!

k-nn(k近傍法)クラス分類をPythonで実装してみよう!

Share

Topic Trends

NaN trends timeline
trends timeline for Images%20of%20K-means++%E6%B3%95

Parsed Words

  • ほう
    law / act / principle
    0