Available on Google PlayApp Store

Images of 代理処罰

jeanne6663
懲戒処分の種類と職場での犯罪行為と7つの罪

懲戒処分の種類と職場での犯罪行為と7つの罪

楽天サプライズデー【Shark 公式】 Shark シャーク EVOPOWER EX 充電式ハンディクリーナー アクセサリーパックセット(ペットマルチツール・布団用ノズル) エヴォパワーイーエックス WV405J-XKITMTWUT400J / 掃除機 ハンディー スタンド付き 軽い スリム 収納 コンパクト

楽天サプライズデー【Shark 公式】 Shark シャーク EVOPOWER EX 充電式ハンディクリーナー アクセサリーパックセット(ペットマルチツール・布団用ノズル)…

160408取消しの遡及効とは?2

160408取消しの遡及効とは?2

【警告】口座売買は犯罪!逮捕や口座凍結のリスク大でどんな処罰がある?

【警告】口座売買は犯罪!逮捕や口座凍結のリスク大でどんな処罰がある?

中国・河南省信陽市 - 「法治」民主化封じ 出所後も軟禁7カ月 - 写真・画像(2/2)

中国・河南省信陽市 - 「法治」民主化封じ 出所後も軟禁7カ月 - 写真・画像(2/2)

【クーポンで4978円】「楽天1位」加湿器 ハイブリッド加湿器 大容量 5L 超音波式 加熱式 加湿器 おしゃれ 4重除菌 6段階調節 卓上加湿器 上部給水 湿度設定 自動湿度調節 空焚き防止 UVライト付き タイマー アロマ対応 静音 節電 省エネ エコ 軽量 送料無料

【クーポンで4978円】「楽天1位」加湿器 ハイブリッド加湿器 大容量 5L 超音波式 加熱式 加湿器 おしゃれ 4重除菌 6段階調節 卓上加湿器 上部給水 湿度設定 自動湿度調節 空焚き防止…

ニコニコ動画

ニコニコ動画

手洗いをしっかりしよう!Japaaan		脇に避けて道を譲る人々/Wikipedia「大名行列」RANKING ランキング

手洗いをしっかりしよう!Japaaan 脇に避けて道を譲る人々/Wikipedia「大名行列」RANKING ランキング

激安SALE\クーポンで最安2480円/楽天1位 5冠達成 セラミックヒーター ファンヒーター 2秒速暖 小型 静音 省エネ おしゃれ 足元ヒーター 12畳部屋対応 転倒自動オフ マイナスイオン付き 600W/1300W 3段階切替 卓上ヒーター 電気ヒーター セラミックファンヒーター

激安SALE\クーポンで最安2480円/楽天1位 5冠達成 セラミックヒーター ファンヒーター 2秒速暖 小型 静音 省エネ おしゃれ 足元ヒーター 12畳部屋対応 転倒自動オフ…

バイデン氏、議会のESG投資規則不承認巡り初の拒否権行使

バイデン氏、議会のESG投資規則不承認巡り初の拒否権行使

Chikirinの日記  処罰か、それとも更生か

Chikirinの日記 処罰か、それとも更生か

【ガーシー】東谷義和容疑者に旅券返納命令要請!警察庁が動く!!コメント

【ガーシー】東谷義和容疑者に旅券返納命令要請!警察庁が動く!!コメント

\国内シェア&楽天総合 1位/ 《ReFa公式店》 ストレートアイロン リファ ストレートアイロン プロ ReFa STRAIGHT IRON PRO 海外対応 ヘアアイロン コテ プレゼント ギフト 1年保証 無料保証 ツヤ 傷まない 美容師 ヘアケア ピンク ヘアーアイロン 2024winter クリスマス

\国内シェア&楽天総合 1位/ 《ReFa公式店》 ストレートアイロン リファ ストレートアイロン プロ ReFa STRAIGHT IRON PRO 海外対応 ヘアアイロン コテ…

組織犯罪処罰法改正案への反対集会で声を上げる人たち=東京都千代田区で2017年6月14日午後9時17分、宮間俊樹撮影

組織犯罪処罰法改正案への反対集会で声を上げる人たち=東京都千代田区で2017年6月14日午後9時17分、宮間俊樹撮影

かわいいフリー素材集

かわいいフリー素材集

代理処罰

代理処罰

【2個同時購入クーポン利用で960円引き!】ミニライスクッカープレミアム 通販をスクープしてみた 通販スクープ テレビ朝日 テレ朝通販 ロッピング ミニ炊飯器 炊飯器 お粥 炊き込みご飯 おかず調理

【2個同時購入クーポン利用で960円引き!】ミニライスクッカープレミアム 通販をスクープしてみた 通販スクープ テレビ朝日 テレ朝通販 ロッピング ミニ炊飯器 炊飯器 お粥 炊き込みご飯 おかず調理

大阪・住之江の中間処理施設|産業廃棄物処理業

大阪・住之江の中間処理施設|産業廃棄物処理業

さいたま市でゴミを分別する3つの理由

さいたま市でゴミを分別する3つの理由

【クーポン利用で41,860円~+最大5,000ポイント!12/14~12/26】24年最新機種 脱毛器 Ulike 公式 IPL Air10光美容器 全身光美容器 脱毛 サファイア冷却機能 顔 ワキ ヒゲ ビキニライン 自宅ケア 女性 男性 家庭用 フラッシュ ギフト VIO 福袋 2025 レディース 冬 コフレ

【クーポン利用で41,860円~+最大5,000ポイント!12/14~12/26】24年最新機種 脱毛器 Ulike 公式 IPL Air10光美容器 全身光美容器 脱毛 サファイア冷却機能 顔…

再処理工場、そもそも必要? 行き詰まる中得た「適合」

再処理工場、そもそも必要? 行き詰まる中得た「適合」

介護保険サービスに不満や悩みはありませんか?

介護保険サービスに不満や悩みはありませんか?

医療廃棄物処理の流れ 収集運搬から処分まで自社で行います産業廃棄物処理の処理工程図医療廃棄物専用容器

医療廃棄物処理の流れ 収集運搬から処分まで自社で行います産業廃棄物処理の処理工程図医療廃棄物専用容器

楽天1位【激安!6,380円でGET】 加湿器 大容量 加湿器 卓上 6L 加湿機 ハイブリッド加湿器 加湿器 スチーム式 四重除菌 空気清浄機 卓上 オフィス 湿度設定 イオン除菌 UVライト除菌 高温除菌 超音波加熱式 次亜塩素酸水対応 アロマ対応 切タイマー設定 省エネ

楽天1位【激安!6,380円でGET】 加湿器 大容量 加湿器 卓上 6L 加湿機 ハイブリッド加湿器 加湿器 スチーム式 四重除菌 空気清浄機 卓上 オフィス 湿度設定 イオン除菌…

シスメックス株式会社様 ソリューションセンター【GJ-50】

シスメックス株式会社様 ソリューションセンター【GJ-50】

燃やせないごみ

燃やせないごみ

No.7 新学期がはじまります手洗い咳・くしゃみ嘔吐物・下痢血液・体液予防接種の大切さPROFILE新着記事一覧おすすめ対策アイテム

No.7 新学期がはじまります手洗い咳・くしゃみ嘔吐物・下痢血液・体液予防接種の大切さPROFILE新着記事一覧おすすめ対策アイテム

象印マホービン|ZOJIRUSHI スチーム式加湿器 グレー EE-DE50 [スチーム式]

象印マホービン|ZOJIRUSHI スチーム式加湿器 グレー EE-DE50 [スチーム式]

ごみ処理工場たんけん

ごみ処理工場たんけん

排水処理フロー

排水処理フロー

防火区画貫通処理工事

防火区画貫通処理工事

サプライズ価格【48時間限定 45%OFF】 ダイソン Dyson V8 Slim Fluffy 掃除機 コードレス掃除機 dyson SV10K EXT BK ダイソン公式 新品 ダイソン掃除機 スティック掃除機 ハンディクリーナー ハンディ掃除機 コードレス サイクロン 軽量 掃除機ダイソン 充電式

サプライズ価格【48時間限定 45%OFF】 ダイソン Dyson V8 Slim Fluffy 掃除機 コードレス掃除機 dyson SV10K EXT BK ダイソン公式 新品 ダイソン掃除機…

【2023年6月】家庭用の生ゴミ処理機おすすめ人気ランキング12選|助成金についても解説!パナソニックの商品など徹底比較

【2023年6月】家庭用の生ゴミ処理機おすすめ人気ランキング12選|助成金についても解説!パナソニックの商品など徹底比較

デルとEMC、NVMe SSD搭載のハイパーコンバージド製品を提供

デルとEMC、NVMe SSD搭載のハイパーコンバージド製品を提供

GridDB データベース管理者ガイドTable of Contents1 はじめに2 概要3 物理設計4 構築5 運用

GridDB データベース管理者ガイドTable of Contents1 はじめに2 概要3 物理設計4 構築5 運用

\タイムセール 60%OFFクーポンで3,188円!/セラミックヒーター 電気ストーブ 電気ヒーター パネルヒーター 暖房器具 暖炉 小型 コンパクト 薄型 人感センサー 脱衣所 足元 フィス 省エネ 木目調 即暖 スリム 脱臭効果 静音設計 10時間連続稼働 転倒時OFF k-00005

\タイムセール 60%OFFクーポンで3,188円!/セラミックヒーター 電気ストーブ 電気ヒーター パネルヒーター 暖房器具 暖炉 小型 コンパクト 薄型 人感センサー 脱衣所 足元 フィス…

トランザクション処理

トランザクション処理

オラクル、インメモリー分散DB「MySQL HeatWave」の運用をマシンラーニングで自動化

オラクル、インメモリー分散DB「MySQL HeatWave」の運用をマシンラーニングで自動化

IBM/japan-technologyName already in usejapan-technology

IBM/japan-technologyName already in usejapan-technology

【ポイント20倍】≪楽天1位≫日本製 電気毛布 敷毛布 130cm×80cm 洗える 全2色 シングル ダニ退治 省エネ スライド温度調節 電気敷き毛布 しき毛布 パーソナル暖房 あったか家電 節電 電気布団 ブラウン オレンジ JBS401D JBS401B ライフジョイ

【ポイント20倍】≪楽天1位≫日本製 電気毛布 敷毛布 130cm×80cm 洗える 全2色 シングル ダニ退治 省エネ スライド温度調節 電気敷き毛布 しき毛布 パーソナル暖房 あったか家電…

アラビア, 人, 処理しなさい, ビジネス, オンラインで

アラビア, 人, 処理しなさい, ビジネス, オンラインで

スーパーパイプライン

スーパーパイプライン

https://image.itmedia.co.jp/edn/articles/1702/24/tt170224MCUQA35_001.jpg

https://image.itmedia.co.jp/edn/articles/1702/24/tt170224MCUQA35_001.jpg

<12月下旬より順次発送予定>正規品【公式通販】ゴリラのひとつかみ ふくらはぎケア 片足タイプ GRF-2401| レッグケア フットケア 足 脚 美脚 むくみケア 強力 ハイパワー 軽量 簡単装着 コンパクト ごりら 収納 自宅 リラックス ドウシシャ

<12月下旬より順次発送予定>正規品【公式通販】ゴリラのひとつかみ ふくらはぎケア 片足タイプ GRF-2401| レッグケア フットケア 足 脚 美脚 むくみケア 強力 ハイパワー 軽量…

ASCII.jp命令の実行順を変えて高速化するアウトオブオーダー

ASCII.jp命令の実行順を変えて高速化するアウトオブオーダー

14. パイプライン処理によるログの加工方法(Processing pipelines)

14. パイプライン処理によるログの加工方法(Processing pipelines)

ストリームデータ処理の意味・フリー図解

ストリームデータ処理の意味・フリー図解

ヒーター セラミックヒーター 人感センサー 省エネ 速暖 1200W/700W 出力2段階 HF-L122/DSF-TL12 セラミックファンヒーター 電気ストーブ 電気ヒーター 小型 節電 足もと暖房 脱衣所 おしゃれ シンプル 山善 YAMAZEN 【送料無料】

ヒーター セラミックヒーター 人感センサー 省エネ 速暖 1200W/700W 出力2段階 HF-L122/DSF-TL12 セラミックファンヒーター 電気ストーブ 電気ヒーター 小型 節電…

Polyphony: Python ではじめる FPGA        Polyphony: Python ではじめる FPGA

Polyphony: Python ではじめる FPGA Polyphony: Python ではじめる FPGA

FFTは前述しているように性能を優先するため、入力から出力まで大小のパイプラインを連ねて構成します。先ず全体像となる大きなパイプラインを考えます。
          大きなパイプラインのステージ分け[1]は、データの塊をバッファする前後の処理で分けると考えやすいと思います。ここでは、SRAMへのデータ入力→SRAM間のRadix-4を用いたバタフライ計算の繰り返し→SRAMからのデータ出力の3ステージとします。またそれぞれ、LoadData, BfCalc, StoreDataと命名け[2]します。
          入出力のインターフェイスは、未知の外部モジュールとの接続を考慮するといくらかの柔軟性が必要です。このような柔軟性はメモリ接続が参考になります。これに基づいてリクエスト(起動)制御とデータ制御を分離します(それぞれのパイプラインは非同期制御になります)。
            
          3つのステージの制御ですが、スループット制御の入力制御タイプ?を使います。これにより、それぞれのステージが処理を終えるまでパラメータがHold制御されます。これを採用する理由は、将来的にFFTの起動ごとに変換するサンプル数や逆変換など自由に変えることができるようにしたいためです。参考に、パラメータのページも参照して下さい。
          なお、性能向上とStall系の伝搬を遮断するため、ステージ間にはFIFOを挿入します。挿入しないと前段のLoadDataはStallが重なり合い、動作可能なのに動作できず、無駄なWaitサイクルが生じてしまいます。
        
      
        
          リクエストパイプから起動後(iVld)、データパイプからデータを引き抜きSRAMに書き込みます。上記で述べたようにデータ入力が終了するまで、リクエストパイプはHoldします(iStall)。
          入力データをカウントし、その値をアドレスに変換してSRAMアクセスする方法が簡単です。しかし、将来的には2の累乗に足りないものや入力位置オフセットに対処するには、絶対的な位置情報を予め作っておく方が便利です。ここでは、起動後にFFTのポイント数をカウント(cnt)する部分を設け、これでパイプラインを駆動するようにします。
            
          カウンタをBit Reverseしデータアドレスを生成します。また、BfCalcの初段のSRAM Bankの攪拌に合わせてSRAMアドレスを生成します。生成したSRAMアドレスと入力データをSRMAに出力します(?)。
          カウンタを起点にするパイプとデータパイプの結合を行います(?)。コスト的にデータラッチの回数が少なくなるよう、結合部はSRAMアクセスに近い部分が適しますが、データのフォーマット変換等(Int→Floatなど)のため1ステージ程度の余裕を設けておきます(?)。
          カウンタを用いた組み合わせ回路による結合制御は、遅延伝搬を避けるため必須ではありませんがバッファに挟まれるようにします(?)。
            
          なお、パイプラインの入力でパラメータはHoldするものの、異なるパラメータのFFTを連続処理するとパイプラインの中には異なる2つの処理が存在することになります。従って、必要なパラメータは順にパイプラインに流さなければなりません。これがパイプラインにバブルを発生させない秘訣です。逆に言うと、常に同じパラメータを使う場合や、一旦FFTの処理が全て終えるまでパラメータを切り替えない条件を与えれば不要です。
            
        
      
        
          機能的にLoadDataと同じなので、基本的に構成も同じになります。異なるのは、リクエストパイプから起動後直ちにSRAMアクセスを行い、取得したデータをデータパイプに出力することです。また、Bit Reverseは行いません。
          SRAMのアクセス(Read Enableとアドレスをアサート)とデータ取得は、SRAMのSetupタイミングに余裕を与えるため前後にバッファを挿入します(?)。
          リクエストパイプとデータパイプ間には、SRAMと平行にパラメータを伝達するためのバッファ(?)を置きます。両者は同一パイプラインとして同期制御します。
          SRAMは直接Stall制御できないため、例えば、SRAMモデルのRead Enable信号(RE)に後続ステージのStall信号を加味[3]しなければなりません。ステージの構造の基本型(S?)もしくはバッファ型(S?)の図中のデータFFのCEの接続を参考にして下さい。
            
        
      
        
          Radix-4のバタフライ演算の本体になります。と言っても難しくはありません。仕組みはLoadDataとStoreDataを合わせたものであり、パイプラインに演算器を挟む形になります。
          下図に示す通り、StoreDataと同じ構造のカウンタ発生部とSRAM読み出し部、演算パイプ、LoadDataと同じ構造のSRAM書き込み部(カウンタ発生部は削除)の構成になります。
          少し違うのは、サンプル数のカウントに加え、Phaseのカウントを行う点と、前ページで述べたようにPhaseの切り替わり時に処理を何もしない期間のGAPを加える点です。
            
          SRAMは2ポートSRAMなのでReadとWriteの同時アクセスそのものは問題ないのですが、これから使おうとする値を上書きされては困ります。特にFFTのデータアドレッシングは、Phase間でシャッフルされるので未Read部分へのWriteが必ず発生します。従ってSRAM容量は増えますが、Read側とWrite側のアドレス空間を分け、PhaseごとにSRAM領域をPing-pongアクセスさせます。LoadDataとStoreDataが同時アクセスするための2重化と違うので注意して下さい(Ping-pongは同一SRAMに対して実施)。
            
          ところで見て分かるように、Phaseの数(log4N)が奇数だとLoadDataで格納した領域に結果が、偶数だと反対側の領域に結果が格納されます。従ってBfCalcはもちろんLoadDataとStoreDataも、過去の処理したサンプル数によりSRAMの格納領域をそれぞれ制御しなければなりません[4]。分かりにくいのですが、LoadDataの入力とStoreDataの出力が同時に動作することを考えると(最大性能を出すためパイプライン処理化)、それぞれの格納領域は排他的な位置になるようにします。
          Radix-4のバタフライ演算の実体ですが、下図のように4段の半精度浮動小数点演算器を並べた構造になります。1つ当たり2サイクル必要なので、並走するリクエストパイプ(遅延パイプ)は8段になります。Load側で3サイクル、Store側で0サイクル(バッファは左記の8段に含まれる)必要なので、合計11サイクルのレイテンシを持ったパイプラインになります。
            
          入力データと三角関数の係数(後述)との複素数乗算で、4個のfmulと2個のfaddを使用します。4セット必要ですが、最初の係数は(Re=1, Im=0)になるので1セット分は省略[5]できます(図の括弧は省略しなかった場合の数)。また、回転行列は4セット分の処理で、合計16個のfaddを使用します。回転行列の特性からReとImの交換・符号反転が行えるので乗算器は使用しません[6]。
          三角関数の係数は、サンプル数とPhaseのカウンターを元にROM参照します。ROMはsinθを記述で回転因子分(0〜π/4)羅列しておきます。SRAMのデータ出力のタイミングを合わせて参照します。参照モジュールはサンプルコードを見て下さい。なお、モジュールはsinθテーブルから与える指標を操作して複素数の係数を導き出します。
        
      
        
          SRAMは2セット構成になることは前のページで触れましたが、単純にユニットのSRAMに対する信号をマージすると、同一SRAMへの要求信号が重なり合い誤ったSRAMアクセスが発生してしまいます。
          リクエストの衝突を避けるには、SRAMの状態を把握し各ステージの入り口の起動をブロックする方法(?)と、SRAMアクセス時にStallを掛ける方法(?)が考えられます。ここでは制御が簡単な前者の方法を考えます[7]。
            
          大きなパイプラインの流れをよく考えると、以下の条件が導き出せます。
            
              2ポートSRAMを使用するため、Read対Read、Write対Writeのアクセスの回避が必要
              →LoadDataとBfCalc、StoreDataとBfCalcの組み合わせチェックを実施
              LoadData、BfCalc、StoreDataは処理の終了をもってリレーし、追い越しは生じない
              →リクエストの衝突は異なるFFT処理でしか発生せず、ユニット間のチェックの方向が定まる(BfCalc→LoadData、StoreData→BfCalc)
              2セットのSRAMを用いたダブルバッファ制御の実施
              →リクエストの衝突は使用するセット番号が異なれば生じない
            
          
          具体的には下図のようにFFTを4つ連続して処理する場合、同一セットで生じるBfCalc→LoadData、StoreData→BfCalcの衝突を検知し起動をブロックするだけです。ユニット間はパイプライン接続により、終了後自動的に接続します。なお、LoadDataの処理はLD、BfCalcの処理はBC、StoreDataの処理はSTの箱で示しています。
            
          ブロック制御ですが、ダブルバッファなので2つの状態制御を用意します。それぞれが1つのSRAMの状態を示します。各ユニットのパイプラインの出口をモニタし遷移させます。

FFTは前述しているように性能を優先するため、入力から出力まで大小のパイプラインを連ねて構成します。先ず全体像となる大きなパイプラインを考えます。 大きなパイプラインのステージ分け[1]は、データの塊をバッファする前後の処理で分けると考えやすいと思います。ここでは、SRAMへのデータ入力→SRAM間のRadix-4を用いたバタフライ計算の繰り返し→SRAMからのデータ出力の3ステージとします。またそれぞれ、LoadData, BfCalc, StoreDataと命名け[2]します。 入出力のインターフェイスは、未知の外部モジュールとの接続を考慮するといくらかの柔軟性が必要です。このような柔軟性はメモリ接続が参考になります。これに基づいてリクエスト(起動)制御とデータ制御を分離します(それぞれのパイプラインは非同期制御になります)。 3つのステージの制御ですが、スループット制御の入力制御タイプ?を使います。これにより、それぞれのステージが処理を終えるまでパラメータがHold制御されます。これを採用する理由は、将来的にFFTの起動ごとに変換するサンプル数や逆変換など自由に変えることができるようにしたいためです。参考に、パラメータのページも参照して下さい。 なお、性能向上とStall系の伝搬を遮断するため、ステージ間にはFIFOを挿入します。挿入しないと前段のLoadDataはStallが重なり合い、動作可能なのに動作できず、無駄なWaitサイクルが生じてしまいます。 リクエストパイプから起動後(iVld)、データパイプからデータを引き抜きSRAMに書き込みます。上記で述べたようにデータ入力が終了するまで、リクエストパイプはHoldします(iStall)。 入力データをカウントし、その値をアドレスに変換してSRAMアクセスする方法が簡単です。しかし、将来的には2の累乗に足りないものや入力位置オフセットに対処するには、絶対的な位置情報を予め作っておく方が便利です。ここでは、起動後にFFTのポイント数をカウント(cnt)する部分を設け、これでパイプラインを駆動するようにします。 カウンタをBit Reverseしデータアドレスを生成します。また、BfCalcの初段のSRAM Bankの攪拌に合わせてSRAMアドレスを生成します。生成したSRAMアドレスと入力データをSRMAに出力します(?)。 カウンタを起点にするパイプとデータパイプの結合を行います(?)。コスト的にデータラッチの回数が少なくなるよう、結合部はSRAMアクセスに近い部分が適しますが、データのフォーマット変換等(Int→Floatなど)のため1ステージ程度の余裕を設けておきます(?)。 カウンタを用いた組み合わせ回路による結合制御は、遅延伝搬を避けるため必須ではありませんがバッファに挟まれるようにします(?)。 なお、パイプラインの入力でパラメータはHoldするものの、異なるパラメータのFFTを連続処理するとパイプラインの中には異なる2つの処理が存在することになります。従って、必要なパラメータは順にパイプラインに流さなければなりません。これがパイプラインにバブルを発生させない秘訣です。逆に言うと、常に同じパラメータを使う場合や、一旦FFTの処理が全て終えるまでパラメータを切り替えない条件を与えれば不要です。 機能的にLoadDataと同じなので、基本的に構成も同じになります。異なるのは、リクエストパイプから起動後直ちにSRAMアクセスを行い、取得したデータをデータパイプに出力することです。また、Bit Reverseは行いません。 SRAMのアクセス(Read Enableとアドレスをアサート)とデータ取得は、SRAMのSetupタイミングに余裕を与えるため前後にバッファを挿入します(?)。 リクエストパイプとデータパイプ間には、SRAMと平行にパラメータを伝達するためのバッファ(?)を置きます。両者は同一パイプラインとして同期制御します。 SRAMは直接Stall制御できないため、例えば、SRAMモデルのRead Enable信号(RE)に後続ステージのStall信号を加味[3]しなければなりません。ステージの構造の基本型(S?)もしくはバッファ型(S?)の図中のデータFFのCEの接続を参考にして下さい。 Radix-4のバタフライ演算の本体になります。と言っても難しくはありません。仕組みはLoadDataとStoreDataを合わせたものであり、パイプラインに演算器を挟む形になります。 下図に示す通り、StoreDataと同じ構造のカウンタ発生部とSRAM読み出し部、演算パイプ、LoadDataと同じ構造のSRAM書き込み部(カウンタ発生部は削除)の構成になります。 少し違うのは、サンプル数のカウントに加え、Phaseのカウントを行う点と、前ページで述べたようにPhaseの切り替わり時に処理を何もしない期間のGAPを加える点です。 SRAMは2ポートSRAMなのでReadとWriteの同時アクセスそのものは問題ないのですが、これから使おうとする値を上書きされては困ります。特にFFTのデータアドレッシングは、Phase間でシャッフルされるので未Read部分へのWriteが必ず発生します。従ってSRAM容量は増えますが、Read側とWrite側のアドレス空間を分け、PhaseごとにSRAM領域をPing-pongアクセスさせます。LoadDataとStoreDataが同時アクセスするための2重化と違うので注意して下さい(Ping-pongは同一SRAMに対して実施)。 ところで見て分かるように、Phaseの数(log4N)が奇数だとLoadDataで格納した領域に結果が、偶数だと反対側の領域に結果が格納されます。従ってBfCalcはもちろんLoadDataとStoreDataも、過去の処理したサンプル数によりSRAMの格納領域をそれぞれ制御しなければなりません[4]。分かりにくいのですが、LoadDataの入力とStoreDataの出力が同時に動作することを考えると(最大性能を出すためパイプライン処理化)、それぞれの格納領域は排他的な位置になるようにします。 Radix-4のバタフライ演算の実体ですが、下図のように4段の半精度浮動小数点演算器を並べた構造になります。1つ当たり2サイクル必要なので、並走するリクエストパイプ(遅延パイプ)は8段になります。Load側で3サイクル、Store側で0サイクル(バッファは左記の8段に含まれる)必要なので、合計11サイクルのレイテンシを持ったパイプラインになります。 入力データと三角関数の係数(後述)との複素数乗算で、4個のfmulと2個のfaddを使用します。4セット必要ですが、最初の係数は(Re=1, Im=0)になるので1セット分は省略[5]できます(図の括弧は省略しなかった場合の数)。また、回転行列は4セット分の処理で、合計16個のfaddを使用します。回転行列の特性からReとImの交換・符号反転が行えるので乗算器は使用しません[6]。 三角関数の係数は、サンプル数とPhaseのカウンターを元にROM参照します。ROMはsinθを記述で回転因子分(0〜π/4)羅列しておきます。SRAMのデータ出力のタイミングを合わせて参照します。参照モジュールはサンプルコードを見て下さい。なお、モジュールはsinθテーブルから与える指標を操作して複素数の係数を導き出します。 SRAMは2セット構成になることは前のページで触れましたが、単純にユニットのSRAMに対する信号をマージすると、同一SRAMへの要求信号が重なり合い誤ったSRAMアクセスが発生してしまいます。 リクエストの衝突を避けるには、SRAMの状態を把握し各ステージの入り口の起動をブロックする方法(?)と、SRAMアクセス時にStallを掛ける方法(?)が考えられます。ここでは制御が簡単な前者の方法を考えます[7]。 大きなパイプラインの流れをよく考えると、以下の条件が導き出せます。 2ポートSRAMを使用するため、Read対Read、Write対Writeのアクセスの回避が必要 →LoadDataとBfCalc、StoreDataとBfCalcの組み合わせチェックを実施 LoadData、BfCalc、StoreDataは処理の終了をもってリレーし、追い越しは生じない →リクエストの衝突は異なるFFT処理でしか発生せず、ユニット間のチェックの方向が定まる(BfCalc→LoadData、StoreData→BfCalc) 2セットのSRAMを用いたダブルバッファ制御の実施 →リクエストの衝突は使用するセット番号が異なれば生じない 具体的には下図のようにFFTを4つ連続して処理する場合、同一セットで生じるBfCalc→LoadData、StoreData→BfCalcの衝突を検知し起動をブロックするだけです。ユニット間はパイプライン接続により、終了後自動的に接続します。なお、LoadDataの処理はLD、BfCalcの処理はBC、StoreDataの処理はSTの箱で示しています。 ブロック制御ですが、ダブルバッファなので2つの状態制御を用意します。それぞれが1つのSRAMの状態を示します。各ユニットのパイプラインの出口をモニタし遷移させます。

Share

Topic Trends

trends timeline
trends timeline for Images%20of%20%E4%BB%A3%E7%90%86%E5%87%A6%E7%BD%B0

Parsed Words

  • 処罰
    しょばつ
    punishment
    0
  • 代理
    だいり
    representation / agency / proxy / deputy / agent / attorney / substitute / alternate
    0