Available on Google PlayApp Store

Images of 均輸・平準法

jeanne6663
日本マクドなど3社、国内配送平準化で物効法認定

日本マクドなど3社、国内配送平準化で物効法認定

楽天1位【クーポンで6,580円!】 加湿器 大容量 加湿器 卓上 6L 加湿機 ハイブリッド加湿器 加湿器 スチーム式 四重除菌 空気清浄機 卓上 オフィス 湿度設定 イオン除菌 UVライト除菌 高温除菌 超音波加熱式 次亜塩素酸水対応 アロマ対応 切タイマー設定 省エネ 新生活

楽天1位【クーポンで6,580円!】 加湿器 大容量 加湿器 卓上 6L 加湿機 ハイブリッド加湿器 加湿器 スチーム式 四重除菌 空気清浄機 卓上 オフィス 湿度設定 イオン除菌 UVライト除菌…

EC実施企業も省エネ法の規制対象に。一定規模の事業者には報告義務も

EC実施企業も省エネ法の規制対象に。一定規模の事業者には報告義務も

SERVICEサービス

SERVICEサービス

お知らせ

お知らせ

\国内シェア&楽天総合 1位/ 《ReFa公式店》 ストレートアイロン リファ ストレートアイロン プロ ReFa STRAIGHT IRON PRO バレンタイン 海外対応 ヘアアイロン コテ プレゼント ギフト 1年保証 無料保証 ツヤ 傷まない 美容師 ヘアケア 2024winter ホワイトデー 母の日

\国内シェア&楽天総合 1位/ 《ReFa公式店》 ストレートアイロン リファ ストレートアイロン プロ ReFa STRAIGHT IRON PRO バレンタイン 海外対応 ヘアアイロン…

「槇尾日記」 槇尾中ブログ

「槇尾日記」 槇尾中ブログ

法人保険の教科書長期平準定期保険とは?保障と積立・最新の活用法のポイント

法人保険の教科書長期平準定期保険とは?保障と積立・最新の活用法のポイント

省エネ法は改正されたの?(その1:電気需要平準化評価原単位について)(注)平成25年の改正

省エネ法は改正されたの?(その1:電気需要平準化評価原単位について)(注)平成25年の改正

楽天1位【SALONIA サロニア ストレート ヘアアイロン 15mm 24mm 35mm】■一部予約商品■2/14入荷予定送料無料 1年保証 耐熱ポーチ付き hk ヘアアイロン 人気 おすすめ 卒業式 入学式

楽天1位【SALONIA サロニア ストレート ヘアアイロン 15mm 24mm 35mm】■一部予約商品■2/14入荷予定送料無料 1年保証 耐熱ポーチ付き hk ヘアアイロン 人気 おすすめ…

建者(けんじゃ)を応援する一般社団法人千葉県建設業協会

建者(けんじゃ)を応援する一般社団法人千葉県建設業協会

あえいずの日記  均輸法

あえいずの日記 均輸法

ウォーターサーバー らく楽スタイル smart プラス(省エネECOモード機能搭載) 天然水 12L x 2本 定期購入【送料無料】【コスモウォーター販売店】

ウォーターサーバー らく楽スタイル smart プラス(省エネECOモード機能搭載) 天然水 12L x 2本 定期購入【送料無料】【コスモウォーター販売店】

積立投資(投信積立)ではじめる資産運用。「ドルコスト平均法」のメリットとデメリットとは?

積立投資(投信積立)ではじめる資産運用。「ドルコスト平均法」のメリットとデメリットとは?

「建設業法及び公共工事の入札及び契約の適正化の促進に関する法律」を一部改正

「建設業法及び公共工事の入札及び契約の適正化の促進に関する法律」を一部改正

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

髭剃り 電気シェーバー メンズ 電動 フィリップス S5000シリーズ 回転式 充電式 S5889/10 防水 お風呂剃り 丸洗い 純正品 正規品 オイル差し不要 コードレス philips

髭剃り 電気シェーバー メンズ 電動 フィリップス S5000シリーズ 回転式 充電式 S5889/10 防水 お風呂剃り 丸洗い 純正品 正規品 オイル差し不要 コードレス philips

データ解析12 k平均法        データ解析12 k平均法

データ解析12 k平均法 データ解析12 k平均法

化学基礎を確実に理解するための7つの勉強法

化学基礎を確実に理解するための7つの勉強法

機械学習			機械学習とは?

機械学習 機械学習とは?

【在庫処分特価5,500→2,728円】おひとり様2個まで 【楽天1位 】 毛玉クリーナー 毛玉とり 毛玉取り器 テスコム 公式 KD901 電動 充電式 コードレス 交流式  毛玉取り けだま セーター ニット カーペット ソファ TESCOM 国内メーカー

【在庫処分特価5,500→2,728円】おひとり様2個まで 【楽天1位 】 毛玉クリーナー 毛玉とり 毛玉取り器 テスコム 公式 KD901 電動 充電式 コードレス 交流式  毛玉取り けだま…

ドルコスト平均法

ドルコスト平均法

ドルコスト平均法

ドルコスト平均法

データ解析12 k平均法        データ解析12 k平均法

データ解析12 k平均法 データ解析12 k平均法

《公式店》【SALONIA サロニア スピーディー イオンドライヤー】■一部予約商品■2/14入荷予定 送料無料 1年保証 ◆30日間全額返金保証◆ドライヤー 軽量 人気 ランキング hk ギフト 卒業式 入学式

《公式店》【SALONIA サロニア スピーディー イオンドライヤー】■一部予約商品■2/14入荷予定 送料無料 1年保証 ◆30日間全額返金保証◆ドライヤー 軽量 人気 ランキング hk ギフト…

クラスタリングについて        クラスタリングについて

クラスタリングについて クラスタリングについて

f:id:akanuma-hiroaki:20170106072939p:plain

f:id:akanuma-hiroaki:20170106072939p:plain

【概率】常见分布(离散/连续)、卷积公式(实际意义与作用、公式、记忆法)一、离散型变量的分布 1. 0—1分布(两点分布)X~B(1,p) 只进行一次事件试验,该事件发生的概率为p,不发生的概率为1-p。任何一个只有两种结果的随机事件都服从0-1分布。是n=1时的二项分布。 ,k=0,1。k=0时,表示某随机事件失败的概率;k=1,表示某随机事件成功的概率。 分布律(下表)。E(X)=p;D(X)=p(1-p)。 X01P(x)1-pp2. 二项分布(n重伯努利分布)X~B(n,p) 重复n次独立的伯努利实验(伯努利试验是在同样条件下重复、独立进行的一种随机试验,其特点是只有两种可能结果:发生或者不发生)。单个伯努利试验没有多大意义,反复进行时可以观察成功次数,此时的分析更有意义。 【例】某售货员电话推销n次中,成功k次的概率。,k=0,1,……n。在n次实验中成功次数为k时的概率。 E(X)=np;D(X)=np(1-p)。 记忆:二项分布就是n重伯努利分布,二项“伯”。 《二项分布(Binomial Distribution)》:https://blog.csdn.net/huangjx36/article/details/77990392 3. 泊松分布 X~P(λ) 描述单位时间内随机事件发生的次数。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】某网站平均每分钟有2次访问,下一分钟内的访问量是λ的概率。  表示某单位时间内,随机事件发生k次的概率。 E(X)=D(X)=λ。 记忆:一天内停车场没“泊”几辆车,太轻“松”,是因为λ、e两个人都有帽子(都有指数)。 4. 几何分布 X~G(p) 在n次伯努利试验中,第k次才首次成功的概率。是前k-1次都失败,第k次成功的概率。 【例】某产品的不合格率为0.05,则首次查到不合格品时的检查次数X ~ G(0.05) 。 ,   记忆:首次成功做出几何题。 二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。  2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。  2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)

【概率】常见分布(离散/连续)、卷积公式(实际意义与作用、公式、记忆法)一、离散型变量的分布 1. 0—1分布(两点分布)X~B(1,p) 只进行一次事件试验,该事件发生的概率为p,不发生的概率为1-p。任何一个只有两种结果的随机事件都服从0-1分布。是n=1时的二项分布。 ,k=0,1。k=0时,表示某随机事件失败的概率;k=1,表示某随机事件成功的概率。 分布律(下表)。E(X)=p;D(X)=p(1-p)。 X01P(x)1-pp2. 二项分布(n重伯努利分布)X~B(n,p) 重复n次独立的伯努利实验(伯努利试验是在同样条件下重复、独立进行的一种随机试验,其特点是只有两种可能结果:发生或者不发生)。单个伯努利试验没有多大意义,反复进行时可以观察成功次数,此时的分析更有意义。 【例】某售货员电话推销n次中,成功k次的概率。,k=0,1,……n。在n次实验中成功次数为k时的概率。 E(X)=np;D(X)=np(1-p)。 记忆:二项分布就是n重伯努利分布,二项“伯”。 《二项分布(Binomial Distribution)》:https://blog.csdn.net/huangjx36/article/details/77990392 3. 泊松分布 X~P(λ) 描述单位时间内随机事件发生的次数。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】某网站平均每分钟有2次访问,下一分钟内的访问量是λ的概率。  表示某单位时间内,随机事件发生k次的概率。 E(X)=D(X)=λ。 记忆:一天内停车场没“泊”几辆车,太轻“松”,是因为λ、e两个人都有帽子(都有指数)。 4. 几何分布 X~G(p) 在n次伯努利试验中,第k次才首次成功的概率。是前k-1次都失败,第k次成功的概率。 【例】某产品的不合格率为0.05,则首次查到不合格品时的检查次数X ~ G(0.05) 。 ,   记忆:首次成功做出几何题。 二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。 2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。 2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)

【クーポンで1900円オフ】【2年保証】掃除機 コードレス掃除機 Orage史上 超高性能 RR11 軽量 人気 1位 自立 自走式 スティック クリーナー サイクロン 強力吸引 充電式 ハンディ掃除機 一人暮らし ジェネリック家電

【クーポンで1900円オフ】【2年保証】掃除機 コードレス掃除機 Orage史上 超高性能 RR11 軽量 人気 1位 自立 自走式 スティック クリーナー サイクロン 強力吸引 充電式…

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

応用数学、機械学習、深層学習:前編 1 応用数学 機械学習 深層学習: Day1確認テストの考察中間層出力演習結果と考察

応用数学、機械学習、深層学習:前編 1 応用数学 機械学習 深層学習: Day1確認テストの考察中間層出力演習結果と考察

【クーポンで最安4978円】「楽天1位」加湿器 ハイブリッド加湿器 大容量 5L 超音波式 加熱式 加湿器 おしゃれ 4重除菌 6段階調節 卓上加湿器 上部給水 湿度設定 自動湿度調節 空焚き防止 UVライト付き タイマー アロマ対応 静音 節電 省エネ エコ 軽量 送料無料

【クーポンで最安4978円】「楽天1位」加湿器 ハイブリッド加湿器 大容量 5L 超音波式 加熱式 加湿器 おしゃれ 4重除菌 6段階調節 卓上加湿器 上部給水 湿度設定 自動湿度調節 空焚き防止…

【Python】KNN(k近傍法)とk-means(k平均法)の違いと区別

【Python】KNN(k近傍法)とk-means(k平均法)の違いと区別

k平均法による減色処理に混合ガウスモデルを適用してもうまくいかないRecommendsSpecial Topics

k平均法による減色処理に混合ガウスモデルを適用してもうまくいかないRecommendsSpecial Topics

【クラスタリング入門編】k-means(k平均法)を基礎から実装まで説明

【クラスタリング入門編】k-means(k平均法)を基礎から実装まで説明

【公式】ソイリッチ返品保証30日間 正規品 完全豆乳メーカー 豆乳機 豆乳マシーン 豆乳ブレンダー ミキサー ブレンダー ジューサー スープメーカー ヨーグルトメーカー スープ スムージー 甘酒 アーモンドミルク 発酵 お手入れ簡単 乾燥豆OK ショップジャパン 公式

【公式】ソイリッチ返品保証30日間 正規品 完全豆乳メーカー 豆乳機 豆乳マシーン 豆乳ブレンダー ミキサー ブレンダー ジューサー スープメーカー ヨーグルトメーカー スープ スムージー 甘酒…

ラビットチャレンジ(E資格)】機械学習_主成分分析・k近傍法・k-平均法・SVMはじめに主成分分析k近傍法(kNN:k-Nearest Neighbor)k-平均法(k-means)サポートベクターマシン(SVM)

ラビットチャレンジ(E資格)】機械学習_主成分分析・k近傍法・k-平均法・SVMはじめに主成分分析k近傍法(kNN:k-Nearest Neighbor)k-平均法(k-means)サポートベクターマシン(SVM)

【基礎からしっかり理解しよう】階層なしクラスタリングであるK平均法(K-means法)の概要を分かりやすく解説

【基礎からしっかり理解しよう】階層なしクラスタリングであるK平均法(K-means法)の概要を分かりやすく解説

gm problem

gm problem

カールアイロン \国内シェア&楽天 No.1/ 《ReFa公式店》 リファ カールアイロン プロ ReFa CURL IRON バレンタイン 正規品 ヘアアイロン アイロン コテ 1年保証 無料保証 プレゼント ツヤ 傷まない ヘアケア 美容師 ギフト 2024winter ホワイトデー 母の日

カールアイロン \国内シェア&楽天 No.1/ 《ReFa公式店》 リファ カールアイロン プロ ReFa CURL IRON バレンタイン 正規品 ヘアアイロン アイロン コテ 1年保証…

scikit-learn KMeansを使ったアヤメデータのクラスタリング

scikit-learn KMeansを使ったアヤメデータのクラスタリング

ドル・コスト平均法とは?

ドル・コスト平均法とは?

検索条件代表的な機械学習アルゴリズムの仕組みをわかりやすく解説!ディープラーニングとはどう違う?モデルの選び方も紹介します!関連記事人気記事新着案件情報

検索条件代表的な機械学習アルゴリズムの仕組みをわかりやすく解説!ディープラーニングとはどう違う?モデルの選び方も紹介します!関連記事人気記事新着案件情報

【無料重曹付き】【1年間修理なし即交換】豆乳メーカー 豆乳機 自動調理ポット ブレンダー/ジュース/スープメーカー おかゆ 自動調理器 全自動 豆乳マシン 小型 スリム&軽量 ジューサーミキサー 乾燥大豆対応 静音設計 一台七役 nut milk maker

【無料重曹付き】【1年間修理なし即交換】豆乳メーカー 豆乳機 自動調理ポット ブレンダー/ジュース/スープメーカー おかゆ 自動調理器 全自動 豆乳マシン 小型 スリム&軽量 ジューサーミキサー…

沈阳市气象台发布最新天气预报

沈阳市气象台发布最新天气预报

RDKitとk平均法による化合物の非階層型クラスタリング

RDKitとk平均法による化合物の非階層型クラスタリング

JDLA認定プログラム:機械学習線形回帰

JDLA認定プログラム:機械学習線形回帰

【楽天で一番売れた 】ストレート ヘアアイロン 15mm 24mm サロンムーン LDK ベスコス ベストバイ ミラーダブルイオン ヘアアイロン 美容師 おすすめ SALONMOON ヘアーアイロン ストレートアイロン 楽天 ランキング 1位 おすすめ 安い

【楽天で一番売れた 】ストレート ヘアアイロン 15mm 24mm サロンムーン LDK ベスコス ベストバイ ミラーダブルイオン ヘアアイロン 美容師 おすすめ SALONMOON…

目指せ!ウエスト76cm!

目指せ!ウエスト76cm!

30代・ひつじの資産運用超入門日記                        ひつじ

30代・ひつじの資産運用超入門日記 ひつじ

Share

Topic Trends

trends timeline
trends timeline for Images%20of%20%E5%9D%87%E8%BC%B8%E3%83%BB%E5%B9%B3%E6%BA%96%E6%B3%95

Parsed Words

  •  
    ひとし
    Hitoshi
    0
  • ほう
    law / act / principle
    0
  • 平準
    へいじゅん
    level
    0
  •  
    0