Available on Google PlayApp Store

Images of 均輸法

jeanne6663
日本マクドなど3社、国内配送平準化で物効法認定

日本マクドなど3社、国内配送平準化で物効法認定

【クーポンで10%OFF 11/4 12:00~】毛布 NERUS 【正規品】 ふわとろ毛布 もこもこ毛布 ブランケット モコモコ とろとろ ふわふわ 毛布 シングル セミダブル ダブル ハーフ ふわもこ ひざ掛け おしゃれ 2枚合わせ 暖かい 厚手 HTC18

【クーポンで10%OFF 11/4 12:00~】毛布 NERUS 【正規品】 ふわとろ毛布 もこもこ毛布 ブランケット モコモコ とろとろ ふわふわ 毛布 シングル セミダブル ダブル ハーフ…

EC実施企業も省エネ法の規制対象に。一定規模の事業者には報告義務も

EC実施企業も省エネ法の規制対象に。一定規模の事業者には報告義務も

SERVICEサービス

SERVICEサービス

お知らせ

お知らせ

椅子脚カバー 椅子足カバー イス 脚キャップ イス脚キャップ 椅子脚キャップ 椅子 脚 カバー 丸形 長方形 正方形 脱げにくい フッ素 傷防止 カンガルー カルガルー マルチサイズ マルチカバー レビュー6 日本製 8個入 木製脚用

椅子脚カバー 椅子足カバー イス 脚キャップ イス脚キャップ 椅子脚キャップ 椅子 脚 カバー 丸形 長方形 正方形 脱げにくい フッ素 傷防止 カンガルー カルガルー マルチサイズ マルチカバー…

「槇尾日記」 槇尾中ブログ

「槇尾日記」 槇尾中ブログ

法人保険の教科書長期平準定期保険とは?保障と積立・最新の活用法のポイント

法人保険の教科書長期平準定期保険とは?保障と積立・最新の活用法のポイント

省エネ法は改正されたの?(その1:電気需要平準化評価原単位について)(注)平成25年の改正

省エネ法は改正されたの?(その1:電気需要平準化評価原単位について)(注)平成25年の改正

【LINE登録で300円クーポン】楽天1位 販売累計8.8万枚!ラグ 洗える シエロ ラグマット キルトラグ 絨毯 北欧 おしゃれ カーペット 95×130 130×190 190×190 190×240 190×300 1.5畳 2畳 3畳 正方形 長方形 子供 家族 リビング 滑り止め コーデュロイ

【LINE登録で300円クーポン】楽天1位 販売累計8.8万枚!ラグ 洗える シエロ ラグマット キルトラグ 絨毯 北欧 おしゃれ カーペット 95×130 130×190 190×190…

建者(けんじゃ)を応援する一般社団法人千葉県建設業協会

建者(けんじゃ)を応援する一般社団法人千葉県建設業協会

あえいずの日記  均輸法

あえいずの日記 均輸法

一部割引SALE中!【日本No.1受賞】ハグモッチ® 正規品【さらに改善】【医師の92%が推奨】20万人の眠りを変えた 枕 ふわもち 腰 肩 首 いびき防止 抱き枕 妊婦 人をダメにする クッション【品質保証3年】カバー 洗える 高さ調整 たっぷり補充綿( 誕生日プレゼント にも)

一部割引SALE中!【日本No.1受賞】ハグモッチ® 正規品【さらに改善】【医師の92%が推奨】20万人の眠りを変えた 枕 ふわもち 腰 肩 首 いびき防止 抱き枕 妊婦 人をダメにする…

積立投資(投信積立)ではじめる資産運用。「ドルコスト平均法」のメリットとデメリットとは?

積立投資(投信積立)ではじめる資産運用。「ドルコスト平均法」のメリットとデメリットとは?

「建設業法及び公共工事の入札及び契約の適正化の促進に関する法律」を一部改正

「建設業法及び公共工事の入札及び契約の適正化の促進に関する法律」を一部改正

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

<3年連続最も売れた毛布> 毛布 シングル 140×200cm ブランケット 冬 ひざ掛け 膝掛け 掛け毛布 160×200cm 180×200cm レギュラー ボリュームタイプ 4層プレミアム マイクロファイバー フランネル セミダブル ダブル あったか 暖かい

<3年連続最も売れた毛布> 毛布 シングル 140×200cm ブランケット 冬 ひざ掛け 膝掛け 掛け毛布 160×200cm 180×200cm レギュラー ボリュームタイプ 4層プレミアム…

データ解析12 k平均法        データ解析12 k平均法

データ解析12 k平均法 データ解析12 k平均法

化学基礎を確実に理解するための7つの勉強法

化学基礎を確実に理解するための7つの勉強法

機械学習			機械学習とは?

機械学習 機械学習とは?

\祝55万枚!10%OFFクーポン/\4.61の高評価/毛布 シングル 冬用 毛布 ダブル 毛布 セミダブル ブランケット ひざ掛け 北欧 あったか 洗濯可/伝説の毛布 マイクロファイバー レギュラー ボリューム yrh/ bon moment ボンモマン【送料無料】

\祝55万枚!10%OFFクーポン/\4.61の高評価/毛布 シングル 冬用 毛布 ダブル 毛布 セミダブル ブランケット ひざ掛け 北欧 あったか 洗濯可/伝説の毛布 マイクロファイバー…

ドルコスト平均法

ドルコスト平均法

ドルコスト平均法

ドルコスト平均法

データ解析12 k平均法        データ解析12 k平均法

データ解析12 k平均法 データ解析12 k平均法

3日0時〜24時P5倍!【ジャンル大賞!累計販売100万枚突破】 洗える フランネルラグ 軽量 滑り止め 洗える 100×140 / 130×185 / 185×185 / 200×250 / 200×300 ラグ 絨毯 ラグマット ラグ フランネル 長方形 四角 ウォッシャブル ホットカーペット対応 おしゃれ

3日0時〜24時P5倍!【ジャンル大賞!累計販売100万枚突破】 洗える フランネルラグ 軽量 滑り止め 洗える 100×140 / 130×185 / 185×185 / 200×250 /…

クラスタリングについて        クラスタリングについて

クラスタリングについて クラスタリングについて

f:id:akanuma-hiroaki:20170106072939p:plain

f:id:akanuma-hiroaki:20170106072939p:plain

【概率】常见分布(离散/连续)、卷积公式(实际意义与作用、公式、记忆法)一、离散型变量的分布 1. 0—1分布(两点分布)X~B(1,p) 只进行一次事件试验,该事件发生的概率为p,不发生的概率为1-p。任何一个只有两种结果的随机事件都服从0-1分布。是n=1时的二项分布。 ,k=0,1。k=0时,表示某随机事件失败的概率;k=1,表示某随机事件成功的概率。 分布律(下表)。E(X)=p;D(X)=p(1-p)。 X01P(x)1-pp2. 二项分布(n重伯努利分布)X~B(n,p) 重复n次独立的伯努利实验(伯努利试验是在同样条件下重复、独立进行的一种随机试验,其特点是只有两种可能结果:发生或者不发生)。单个伯努利试验没有多大意义,反复进行时可以观察成功次数,此时的分析更有意义。 【例】某售货员电话推销n次中,成功k次的概率。,k=0,1,……n。在n次实验中成功次数为k时的概率。 E(X)=np;D(X)=np(1-p)。 记忆:二项分布就是n重伯努利分布,二项“伯”。 《二项分布(Binomial Distribution)》:https://blog.csdn.net/huangjx36/article/details/77990392 3. 泊松分布 X~P(λ) 描述单位时间内随机事件发生的次数。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】某网站平均每分钟有2次访问,下一分钟内的访问量是λ的概率。  表示某单位时间内,随机事件发生k次的概率。 E(X)=D(X)=λ。 记忆:一天内停车场没“泊”几辆车,太轻“松”,是因为λ、e两个人都有帽子(都有指数)。 4. 几何分布 X~G(p) 在n次伯努利试验中,第k次才首次成功的概率。是前k-1次都失败,第k次成功的概率。 【例】某产品的不合格率为0.05,则首次查到不合格品时的检查次数X ~ G(0.05) 。 ,   记忆:首次成功做出几何题。 二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。  2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。  2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围)  设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为   (ind是indenpendent的简写,表示条件 “X,Y独立”。)  2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!)  注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。  相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。  (内容过零碎,没有小结。)

【概率】常见分布(离散/连续)、卷积公式(实际意义与作用、公式、记忆法)一、离散型变量的分布 1. 0—1分布(两点分布)X~B(1,p) 只进行一次事件试验,该事件发生的概率为p,不发生的概率为1-p。任何一个只有两种结果的随机事件都服从0-1分布。是n=1时的二项分布。 ,k=0,1。k=0时,表示某随机事件失败的概率;k=1,表示某随机事件成功的概率。 分布律(下表)。E(X)=p;D(X)=p(1-p)。 X01P(x)1-pp2. 二项分布(n重伯努利分布)X~B(n,p) 重复n次独立的伯努利实验(伯努利试验是在同样条件下重复、独立进行的一种随机试验,其特点是只有两种可能结果:发生或者不发生)。单个伯努利试验没有多大意义,反复进行时可以观察成功次数,此时的分析更有意义。 【例】某售货员电话推销n次中,成功k次的概率。,k=0,1,……n。在n次实验中成功次数为k时的概率。 E(X)=np;D(X)=np(1-p)。 记忆:二项分布就是n重伯努利分布,二项“伯”。 《二项分布(Binomial Distribution)》:https://blog.csdn.net/huangjx36/article/details/77990392 3. 泊松分布 X~P(λ) 描述单位时间内随机事件发生的次数。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】某网站平均每分钟有2次访问,下一分钟内的访问量是λ的概率。  表示某单位时间内,随机事件发生k次的概率。 E(X)=D(X)=λ。 记忆:一天内停车场没“泊”几辆车,太轻“松”,是因为λ、e两个人都有帽子(都有指数)。 4. 几何分布 X~G(p) 在n次伯努利试验中,第k次才首次成功的概率。是前k-1次都失败,第k次成功的概率。 【例】某产品的不合格率为0.05,则首次查到不合格品时的检查次数X ~ G(0.05) 。 ,   记忆:首次成功做出几何题。 二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。 2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)二、连续型变量的分布 1. 均匀分布 X~U(a, b) 表示区间 [a, b] 内任意等长度区间内事件出现的概率相同的分布。 【例】在一小时内,分针某时刻的角度值满足均匀分布,可研究该角度在40°~80°内的概率。 2. 指数分布 表示两次相继发生的随机事件的时间/空间间隔的概率。参数λ——单位时间(或单位面积)内随机事件的平均发生次数。 【例】电子元件的寿命为多少的概率;接电话的等待时间。 ,      (对期望的理解:如果平均每小时接到2个电话,则接一个电话的平均预期等待时间是半个小时。) 《泊松分布和指数分布:10分钟教程》:http://www.ruanyifeng.com/blog/2015/06/poisson-distribution.html 《二项分布、指数分布与泊松分布的关系》:https://blog.csdn.net/u013164612/article/details/82596583 《泊松分布 & 指数分布》:https://www.cnblogs.com/think-and-do/p/6483335.html 三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)三、卷积公式 1. 实际意义与作用 每年都向一个垃圾填埋场填埋垃圾,垃圾中有毒物质会被逐渐降解,求最终某天填埋场中有毒物质的残余量则是卷积。 每年连续存钱(存钱函数)情况下,经过复利(复利函数)作用,最终得到的钱。 一个函数(如:单位响应)在另一个函数(如:输入信号)上的加权叠加。 一个持续的输入信号与自身延迟的部分的叠加。 信号函数,在系统对信号的响应(响应函数)下,得到的结果(输出)是过去产生的所有信号经过系统的处理(响应)后得到的结果的叠加。 “卷”是因为输入信号、输出信号坐标轴上下放置时,t=0的输入信号在输出的t=10处,而输入t=10的在输出的t=0处,所以需要翻转然后平移,相乘,求积。 卷积应用常被称作滤波,卷积核被称为滤波器。因为卷积可以平滑图像,如在研究服装款式时,可以去除商标、颜色等,即过滤图像中除了边缘外的所有信息,只保留衣服轮廓。卷积核不同,可以达到锐化或模糊图像的效果。 《卷积神经网络-基础》:https://mlnotebook.github.io/post/CNN1/ 写的很详细,推荐。 2. 公式(数学三范围) 设(X,Y)是二维连续型随机变量,具有概率密度 f(x, y),则 Z=X+Y 为连续型随机变量,且概率密度为 (ind是indenpendent的简写,表示条件 “X,Y独立”。) 2.1 推导 具体推导过程从 F 定义式入手,将二重积分拆成二次积分,然后求导得 f 是一次积分。(这里的x+y≤z不是下限,应该写在下面,表示在该区域和定义域的交集处做积分!) 注:这一思路也点出了卷积公式的作用。 即对于求两个连续型随机变量复合函数的密度函数,诸如 Z=X+Y,Z=Y/X,Z=XY 形式。 方法[1]是从分布函数定义出发,对满足 Z≤z 区域的 f(x, y) 积分,再求导得密度函数。方法[2]是用卷积函数,直接用一次积分求出密度函数。2.2 推广 求Z=Y/X,Z=XY的分布函数时,均可用类似的方法。如下。 相关链接:《利用推广的卷积公式解决二维连续型随机变量函数的分布》:https://kaoyan.wendu.com/shuxue/fuxi/115018.shtml 里面有对于定义法和卷积法求的具体例题,可参考。 3. 记忆 以对 dx 积分为例,卷积函数及推广式可统一定义为下式。观察发现,积分限是-∞到+∞;积分函数是两部分的乘积,一部分是密度函数,对 dx 积分,就不能出现 y,所以要把 y 换成 x、z 表达式 y=h(x,z),另一部分是表达式 y=h(x,z) 对 z 的偏导数的绝对值,这里是求偏导,也即认为 x 是常数。所以,对谁积分,就把其他变量换掉,再乘上换掉的变量表达式对 z 的偏导的绝对值。 (内容过零碎,没有小结。)

\赤字覚悟!24h限定クーポンで1800円OFF/【楽天1位受賞★SNSで話題】CICIBELLA 毛布 ふわとろ毛布 もこもこ毛布 両面ボア ブランケット モコモコ とろとろ ふわふわ 毛布 厚手 シングル セミダブル ダブル ハーフ ふわもこ 毛布 ひざ掛け もうふ おしゃれ 2枚合わせ 暖かい

\赤字覚悟!24h限定クーポンで1800円OFF/【楽天1位受賞★SNSで話題】CICIBELLA 毛布 ふわとろ毛布 もこもこ毛布 両面ボア ブランケット モコモコ とろとろ ふわふわ 毛布…

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0        パターン認識02 k平均法ver2.0

パターン認識02 k平均法ver2.0 パターン認識02 k平均法ver2.0

応用数学、機械学習、深層学習:前編 1 応用数学 機械学習 深層学習: Day1確認テストの考察中間層出力演習結果と考察

応用数学、機械学習、深層学習:前編 1 応用数学 機械学習 深層学習: Day1確認テストの考察中間層出力演習結果と考察

【4年連続 確かな品質でインテ寝具総合1位】「純」高反発(R) マットレス 安心エコテックス 3つ折り 10cm 厚 メッシュ/パイル生地 折りたたみ ベッドマットレス シングル セミダブル ダブル 高反発マットレス 三つ折り 高反発 敷布団 敷き布団

【4年連続 確かな品質でインテ寝具総合1位】「純」高反発(R) マットレス 安心エコテックス 3つ折り 10cm 厚 メッシュ/パイル生地 折りたたみ ベッドマットレス シングル セミダブル…

【Python】KNN(k近傍法)とk-means(k平均法)の違いと区別

【Python】KNN(k近傍法)とk-means(k平均法)の違いと区別

k平均法による減色処理に混合ガウスモデルを適用してもうまくいかないRecommendsSpecial Topics

k平均法による減色処理に混合ガウスモデルを適用してもうまくいかないRecommendsSpecial Topics

【クラスタリング入門編】k-means(k平均法)を基礎から実装まで説明

【クラスタリング入門編】k-means(k平均法)を基礎から実装まで説明

[品質が違う高評価レビュー4.54点] マットレス 高反発 シングル 敷布団 敷き布団 三つ折り 高反発マットレス セミダブル ダブル 極厚10cm 3つ折り ベッドマットレス シングルマットレス セミダブルマットレス ダブルマットレス

[品質が違う高評価レビュー4.54点] マットレス 高反発 シングル 敷布団 敷き布団 三つ折り 高反発マットレス セミダブル ダブル 極厚10cm 3つ折り ベッドマットレス シングルマットレス…

ラビットチャレンジ(E資格)】機械学習_主成分分析・k近傍法・k-平均法・SVMはじめに主成分分析k近傍法(kNN:k-Nearest Neighbor)k-平均法(k-means)サポートベクターマシン(SVM)

ラビットチャレンジ(E資格)】機械学習_主成分分析・k近傍法・k-平均法・SVMはじめに主成分分析k近傍法(kNN:k-Nearest Neighbor)k-平均法(k-means)サポートベクターマシン(SVM)

【基礎からしっかり理解しよう】階層なしクラスタリングであるK平均法(K-means法)の概要を分かりやすく解説

【基礎からしっかり理解しよう】階層なしクラスタリングであるK平均法(K-means法)の概要を分かりやすく解説

gm problem

gm problem

【LINE500円OFFクーポン】 枕 枕カバー 付き ヒツジのいらない枕 洗える 通気性 抜群 横向き寝用枕 うつぶせ寝 まくら 柔らかい ジェル 首 寝返り 横向き 仰向け いびき 予防 防止 ゲル 低反発枕 高反発枕 高さ調節 誕生日 ギフト 至極 調律 極柔

【LINE500円OFFクーポン】 枕 枕カバー 付き ヒツジのいらない枕 洗える 通気性 抜群 横向き寝用枕 うつぶせ寝 まくら 柔らかい ジェル 首 寝返り 横向き 仰向け いびき 予防 防止…

scikit-learn KMeansを使ったアヤメデータのクラスタリング

scikit-learn KMeansを使ったアヤメデータのクラスタリング

ドル・コスト平均法とは?

ドル・コスト平均法とは?

検索条件代表的な機械学習アルゴリズムの仕組みをわかりやすく解説!ディープラーニングとはどう違う?モデルの選び方も紹介します!関連記事人気記事新着案件情報

検索条件代表的な機械学習アルゴリズムの仕組みをわかりやすく解説!ディープラーニングとはどう違う?モデルの選び方も紹介します!関連記事人気記事新着案件情報

【ZIP!キテルネで紹介されました!】 毛布 NERUS 【正規品】 ふわとろ毛布 もこもこ毛布 ブランケット とろとろ ふわふわ ふわとろ シングル セミダブル ダブル ハーフ ふわもこ ひざ掛け 掛け毛布 もうふ おしゃれ あったか 暖かい 毛布 厚手 HTC18

【ZIP!キテルネで紹介されました!】 毛布 NERUS 【正規品】 ふわとろ毛布 もこもこ毛布 ブランケット とろとろ ふわふわ ふわとろ シングル セミダブル ダブル ハーフ ふわもこ…

沈阳市气象台发布最新天气预报

沈阳市气象台发布最新天气预报

RDKitとk平均法による化合物の非階層型クラスタリング

RDKitとk平均法による化合物の非階層型クラスタリング

JDLA認定プログラム:機械学習線形回帰

JDLA認定プログラム:機械学習線形回帰

楽天1位 高反発 ラグ 厚手 【防音&クッション性UP】 極厚 25mm フランネル 防音 滑り止め付 マイクロファイバー ラグマット カーペット 130×185 / 185×185 / 200×250 / 200×300 絨毯 高反発 厚手 ホットカーペット対応 床暖房対応

楽天1位 高反発 ラグ 厚手 【防音&クッション性UP】 極厚 25mm フランネル 防音 滑り止め付 マイクロファイバー ラグマット カーペット 130×185 / 185×185 /…

f:id:tsumuradesu:20210318164717j:plain

f:id:tsumuradesu:20210318164717j:plain

Share

Topic Trends

trends timeline
trends timeline for Images%20of%20%E5%9D%87%E8%BC%B8%E6%B3%95

Parsed Words

  •  
    ひとし
    Hitoshi
    0